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Abstract. A density functional approach is applied to study the adsorption of an associating
model fluid in narrow cylindrical capillaries. The model with non-associative Lennard-Jones (LJ),
attraction between fluid particles and the site–site association, permitting the formation of chains
of LJ monomers, i.e. the two-site model for monomers, is investigated. The strength of associative
interactions is varied in the model to obtain an insight into the role of the associative interactions
on the phase diagrams of confined fluids. The fluid–pore walls interaction is chosen in the form
of the Yukawa-type potential. The wetting properties of the confining solid surface is studied first.
Next, we describe the first-order layering transitions in cylindrical pores and the phenomenon of
capillary condensation in capillaries of molecular dimensions. We also analysed the structural
changes in the adsorbed fluids accompanying layering transitions and capillary condensation. A
comparison of the phase diagrams for the fluid in the cylindrical pores with two different radii and
in the slit-like pores, with the same nominal width as the cylindrical pores, is performed. We have
also compared the capillary evaporation phase diagram for the model in question in cylindrical
and slit-like pores. The method and the results represent a useful basis for the development of
inhomogeneous statistical associating fluid theory for several practical applications.

1. Introduction

Several investigations have been concerned with the microscopic structure and thermodynamic
properties, including phase transitions, of simple fluids adsorbed in pores of various geometry,
see e.g. [1–3] for a comprehensive discussion of the subject.

The properties of fluids confined to pores of molecular dimensions differ from those of the
bulk fluid. For example, capillary condensation of a fluid in the pore occurs at a lower value
of the chemical potential than the bulk vapour–liquid transition. Also the critical temperature
of the capillary condensation of simple fluids is depressed with respect to the bulk critical
temperature. In addition, capillary condensation may be preceded by a single or a series of the
first-order layering transitions. The structure of the adsorbed fluid differs from the bulk fluid
structure.
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The most popular models for the pore geometry, involved in a large number of studies, have
been the slit-like and cylindrical models. In both cases, the pore represents an open system
with an infinite surface area. The fluid confined in the open pore must be in equilibrium
with an external reservoir at a certain value of the chemical potential for the fluid species.
Usually the cylindrical pore geometry is considered to be a more realistic model for real
adsorbents. However, cylindrical geometry hinders analytical research, and, moreover, makes
the procedure of finding the numerical solutions much more demanding, in comparison to the
case of a slit-like pore.

Much less investigated are the properties of confined associating fluids, in contrast to
the behaviour of simple fluids. Associating fluids are ubiquitous in nature—water, methanol,
hydrofluorocarbons are some of these systems. The studies of homogeneous associating fluids,
including their thermodynamics and structural properties, have become popular and really
successful after the appearance of the theory of Wertheim for chemical association in the mid
1980s [4–7]. This theory consists of two parts, namely of the Ornstein–Zernike (OZ) type
integral equations and of thermodynamic perturbation theory (TPT). Both ingredients have
in common that the correlation functions and thermodynamic properties are constructed by
using the fugacity expansion for saturable, orientation-dependent, finite-range strong attraction,
rather than the commonly used density expansions. The TPT has been applied to a wide set
of models of associating fluids, beginning from a simple dimerizing model, in which each of
the monomers is characterized by one attractive bonding site, up to sophisticated models with
two, three, four and five attractive sites per monomer [8–12]. The model with two sites is
useful to consider the formation of chains via the chemical association mechanism, whereas
the models with a larger number of sites may serve to consider network-forming fluids. In each
of the models studied by using the TPT, the effect of the non-associative attractive LJ-type
forces has been taken into account in the mean field approximation. The theory has been very
carefully tested with respect to computer simulation data, at the level of the one-, two- and
four-site models [8–11], and has been shown to be quite accurate. The TPT applications for
simple models have been followed by the construction of the so-called statistical associating
fluid theory (SAFT) [13–16]. Two essentials can be attributed to this theoretical approach.
Namely, the explicit form of the free energy is chosen according to the specific system of
experimental interest and besides, the parameters of the model are fitted, for example, to
the experimentally measured critical values (critical temperature and density) or to some low-
temperature data or to vapour pressure data in the certain range of temperatures, see e.g. [13–16]
for a detailed description. Anyway, the SAFT approach at its present stage of development
permits, with reasonable accuracy and with reasonable computational effort, to predict a wide
set of thermodynamic properties and phase diagrams for one-component associating fluids and
two-component mixtures and represents successful and useful chemical engineering tools.

It seems unnecessary to emphasize that the knowledge of interfacial thermodynamic and
structural properties for the model associating fluids would be of much importance both for
basic research and for practical applications. However, to describe inhomogeneous associating
fluids is not a simple task. It is well known that the method of integral equations in the common
theory of liquids faces severe difficulties in describing the thermodynamics of fluids with
attractive interparticle interactions as well as in describing the interfacial thermodynamics of
simple fluids. Attempts to extend the integral equations of Wertheim’s OZ type to the presence
of external fields have also been undertaken. These extensions comprise the first-order, or
the so-called singlet, integral equations [17, 18], as well as the second-order Wertheim’s type
OZ equations, or the so-called pair level theory [19, 20]. The structural properties of the
inhomogeneous models involving only hard-core type repulsive forces, as well as associative
interactions between fluid species, can be described by these tools. However, things become
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difficult if the non-associative attractive interactions are included in the models. In particular,
by construction, the singlet level integral equations are unable to describe phase transitions in
inhomogeneous simple and associating fluids. The pair level theories are formally capable of
describing the surface phase transitions, but they require very extensive numerical calculations
and have almost vanishing practical usefulness in this respect. Moreover, accuracy of a closure,
necessary to complete an integral equation, with respect to the prediction of phase transitions
is difficult to establish. As a consequence of these factors, the second-order integral equations
are unable to compete with the density functional (DF) methods discussed in great detail
in [21, 22]. The DF methods have been implemented with much success to describe the
thermodynamic properties and phase transitions in simple fluids near walls and under a variety
of microporous confinements, including pores of slit-like shape intervened by geometrical or
energetic heterogeneity at the molecular scale, see e.g. [23, 24].

A particular DF approach for fluids with a temperature-dependent association of the species
has been proposed by Segura et al [25]. Their technique combines a density functional
theory for non-associating particles, see e.g. [21, 22], with Wertheim’s TPT for chemical
association [4–8]. Wertheim’s theory has actually been constructed in the form of an associative
free energy functional. The success of Wertheim’s approach and of the TPT was one of the
principal motivations for the development of a similar line of research for inhomogeneous
associating fluids. However, Segura et al [25, 26] have focused their attention only on the
structural properties and thermodynamics of the model for associating hard spheres in contact
with a hard wall. It has been shown that the proposed theory is in reasonable agreement
with the canonical Monte Carlo simulations of these systems [25–27]. Before our recent
publications [27–30], it had not been attempted to include attractive interactions between fluid
species, as well as between them and a confining solid surface, and consequently the problem
of the surface phase transition had not been addressed.

The associative DF theory has been systematically applied to study the adsorption of
associating LJ fluids on solid surfaces [27, 30] and in slit-like pores [28, 29]. The present
study is the continuation of our recently published works.

In this work, however, we focus on some new features of the behaviour of confined
associating fluids, restricting ourselves, without loss of much generality, to the chain-forming
model with two bonding sites per monomer. First, our interest is in the adsorption of this
model fluid in pores of cylindrical shape. We have chosen the fluid–pore wall interaction
potential similar to previously studied models of the adsorption of simple fluids into cylindrical
pores [31, 32]. In the limit of infinite pore radius the fluid–wall potential reduces to the Yukawa-
type potential. In the first part of this work we have performed an analysis of the wetting
properties of the solid surface in question, with respect to the model associating fluid at two
values of association energy between fluid species. Next the phase diagrams of the associating
fluid model in capillaries of different width have been calculated in great detail. We consider
the first-order layering transitions in the cylindrical capillaries and capillary condensation. In
order to obtain an insight into the role of the shape of confinement on capillary condensation,
we have performed a comparison of the phase diagrams for the associating fluid model in the
cylindrical pores and in the slit-like pores of the width nominally equal to the cylindrical pore
diameter, assuming the same fluid–wall interaction potential for both cases. Moreover, we
have performed a comparison of the capillary evaporation phase diagrams obtained for the
cylindrical and slit-like pore cases. The structural properties of the model in cylindrical pores
are discussed in terms of the density profiles of species, of the density profile of unbonded
species and of the average chain length in the pore. These properties in conjunction permit us
to present a quite comprehensive description of adsorption and phase transitions for the model
associating fluid in pores of cylindrical and slit-like geometry.
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To conclude the introductory part of this work, our focus is on the adsorption of chain-
forming LJ associating fluid in narrow cylindrical pores. The fluid model has been involved
in the studies of some n-alkanes and methanol [14]. However, the present formulation of
the associative DF theory does not include all the terms of the free energy according to the
SAFT treatment of alkanes, for example. Our desire for future research is to combine a
complete SAFT free energy expression for the associating model in question, and related
models, with another density functional approach more adequate to deal with mixtures of
associating monomers belonging to different species. This would result in an understanding
of the interfacial behaviour of several systems of practical importance.

The theoretical developments used in this work are similar to those given in [27–30].
However, for the sake of the reader, we repeat principal theoretical arguments quite briefly
and, besides, discuss some novel issues relevant to our study.

2. Modelling and theory

Similar to previous work on associating fluids [8], we consider a system of particles interacting
via the angular dependent pair potential

u(r12,ω1,ω2) = unon(r12) +
∑
A

∑
A′
uAA′(r12,ω1,ω2) (1)

where r12 is the magnitude of the vector r12 connecting the centres of molecules 1 and 2,
and ωi , i = 1, 2, are the orientations of molecules 1 and 2 relative to the vector r12. The
non-associative part of the pair energy, unon(r12), is given by a truncated LJ potential

unon(r) =
{
ε[(σ/r)12 − (σ/r)6] r < rcut

0 otherwise
(2)

where rcut = 2.5σ is the cut-off distance; ε and σ are the parameters of the LJ interaction,
that are chosen as the energy and the length units (ε = 1, σ = 1). The association potential
between a siteA on the molecule 1 and a siteA′ on the molecule 2 denoted as uAA′ , is a square-
well attraction with cone shape geometry, similar to previous studies of the bulk associating
fluids [8],

uAA′(r12,ω1,ω2) =
{

−εAA′ r12 < rca , θA1 < θc, θA′2 < θc

0 otherwise
(3)

where θXi , X = A,A′, i = 1, 2, is the angle between the vector from the centre of molecule i
to the site X and the vector r12.

In the model for a chain-forming fluid, each molecule has two sites, labelledA andA′. We
assume that two molecules can form a bond only via the sites labelled differently, i.e. the bond
can form via the A,A′ pair, but not via the AA or A′A′ pair. In other words uAA = uA′A′ = 0.
The molecules can form chains through the site–site attraction. The square-well attractive
energy, εAA′ is denoted as εas . The upper limit of the square-well attraction, rca , is chosen on
the surface of LJ fluid particles, i.e. at rca = 1, and the bonding angle is θc = 27◦.

The fluid particles interact with cylindrical pore walls via the one-dimensional potential
vc(R), that depends only on the radial distance R from the pore centre. We assume that the
fluid–wall interaction is in the form of the Yukawa-type potential, similar to previous studies
of the adsorption of simple fluids confined to cylindrical capillaries [31, 32]

vc(R) =
{

∞ R > Rc

−2εgsλRcK1(λRc)I0(λR) R < Rc
(4)
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with the parameters εgs and λ;Rc is the radius of the cylindrical capillary. The functionsK1(x)

and I0(x) are modified Bessel functions. The values for the parameters εgs and λ are chosen
to be fixed throughout this study, and equal to 10 and 5, respectively. In the limits Rc → ∞,
R → ∞, z = |Rc − R| 	 Rc

v(R) → −εgs exp(−λz) (5)

such that the cylindrical wall potential reduces to the planar wall potential.
We employ the limiting behaviour given by (5) to investigate the wetting properties of a

single solid surface with respect to the associating model in question and in slit-like pores.
Moreover, to perform comparisons between the cylindrical pore case and the slit-like pore of
the width, H , centred at R = 0, with H = 2Rc, we model the fluid–slit-like pore potential,
vsl(R), as follows,

vsl(R) =
{

∞ |R| > H/2
v(R) |R| < H/2 (6)

where v(R) is given by (5). After describing the model, we proceed to theoretical issues.
According to usual density functional methodology [21, 22], the theory provides an

approximation for the grand thermodynamic potential

 = F +
∫
ρ(r)[v(r)− µ] dr (7)

as a functional of the number density of a fluid, ρ(r), at a given value of the configurational
chemical potentialµ; v(r) is the external field. The Helmholtz free energy, F , is the sum of an
ideal and excess terms, F = F id + Fex . The ideal contribution is known exactly. The excess
part of the free energy consists of two terms, namely Fex = Fexnon +Fexas ; this decomposition is
used in the spirit of the similar decomposition of the fluid–fluid interaction potential in (1).

Several density functional approaches have been developed for fluids interacting via non-
associative, LJ interactions. Here we would like to employ the method in which the non-
associative attractive forces are considered in the mean field approximation, whereas the effects
from repulsive forces are taken into account by using the smoothed density approximation.
To begin with, the non-associative LJ potential, unon(r12), is decomposed into the repulsive
and the attractive part according to the Weeks–Chandler–Andersen (WCA) scheme [33],
unon(r) = urep(r) + uatt (r)

urep(r) =
{
unon(r) + ε r � 21/6σ

0 r > 21/6σ
uatt (r) =

{ −ε r � 21/6σ

unon(r) r > 21/6σ .
(8)

Moreover, we assume that the associative contribution to the excess free energy can also be
written in terms of the smoothed density approximation, according to the approach proposed
by Segura et al [25]. The excess free energy under these assumptions has the form

Fex =
∫
ρ(r)f exrep[ρ̃(r)] dr +

∫
ρ(r)f exas [ρ̃(r)] dr +

1

2

∫
dr1 dr1 uatt (r12)ρ(r1)ρ(r2) (9)

where f ex in each of the first two terms in the right-hand side of (9) denotes the excess free
energy density per particle, in terms of the smoothed density (ρ̃) approximation. It is important
to make clear that the decomposition of the non-associative potential according to (8) does not
concern the associative, second term in (9).

The smoothed density function is chosen according to the theory of Tarazona [34], see also
[21]. Following Tarazona [34], we assume that f exrep(ρ̃) follows from the Carnahan–Starling
equation of state. However, possible optimization of the diameter for effective hard spheres
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has been neglected as a secondary effect, the packing fraction of hard spheres in the equation
of state has been calculated by using the LJ diameter.

The associative contribution to the free energy is taken from the Wertheim’s first-order
TPT [4–8], dependent, however, on the smoothed density

f exas (ρ̃)/kT =
∑
A=1,M

[ln χA(ρ̃)− χA(ρ̃)/2 + 0.5]. (10)

χA is the fraction of fluid molecules not bonded at a site A. According to the statistical
mechanical analogue of the law of mass action, formally generalized for an inhomogeneous
system, the equation for the fraction of particles not bonded at a siteAmust be evaluated from
the equation [25, 35]

χA(r1) = 1

1 +
∑

1<A′<NA

∫
dr2 ρ(r2)χA′(r2)gnon(r1, r2)fAA′(r12)

(11)

where NA (NA = 2) is the number of sites on the second molecule with which the site A
on the first molecule is eligible to bond; fAA′(r12) = 〈exp[−uAA′(r12,ω1,ω2)/kT ] − 1〉 1, 2

is an angle-averaged site–site Mayer function (over the orientations of molecules 1 and 2)
and gnon(r1, r2) is the pair correlation function of the inhomogeneous non-associating fluid.
According to the first-order thermodynamic perturbation theory, equation (11) contains only
the angular averaged function fAA′(r12), such that the orientational effects of bonding cannot
be captured in the framework of this theory. Equation (11) is difficult to deal with without some
further approximations. They have been discussed by us in more detail in our recent work [28].
In particular, the pair correlation function for an inhomogeneous fluid is approximated by the
corresponding function for the uniform fluid to evaluate the fraction of unbonded particles [28].
In contrast to our previous work [27–30], we have chosen the bonding distance to be equal to
the LJ diameter, similar to modelling employed in the works from Gubbins’ group [36–38],
such that the previously discussed procedure requires a few additional comments. In essence,
we calculate χA(r) according to the approximation developed in [25, 27, 28]

χA(r) ≡ χA(ρ̃) = 1

1 +
∑

1<A′<NA ρ̃χA(ρ̃)-AA′
(12)

where

-AA′ = π(1 − cos θc)
2(exp(−εas/kT )− 1)

∫
dr r2gLJ (r). (13)

However, to evaluate -AA′ requires a knowledge of the distribution function for LJ non-
associative fluid, gLJ (r). At this stage of the calculations we have employed the procedure
thoroughly discussed by Johnson and Gubbins [36] and Walsh and Gubbins [37] and
approximate the structure of the LJ fluid by the structure of a softly repulsive fluid

gLJ (r) ≈ exp(−urep(r)/kT )yd(r) (14)

where yd(r) denotes the cavity correlation function of a fluid of hard spheres with diameter
d. The cavity function is obtained by using the Percus–Yevick approximation. It has been
shown that the procedure is fairly accurate for the bulk associating fluid model in question, see
e.g. [36]. It seems that all the intermediate steps of the procedure have been sufficiently well
discussed.

Finally, at equilibrium, δ /δρ(r) = 0, and hence one needs to solve the equation for the
density profile,

−kT ln[ρ(R)] = v(R) + f ex[ρ̃(R)] − f ex(ρb) +
∫
δρ̃(R′)
δρ(R)

f ex
′[ρ̃(R′)]ρ(R′) dr′

−ρbf ex ′
(ρb) +

∫
ua(|r − r′|)[ρ(R′)− ρb] dr′ (15)
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where f ex′ is the excess free energy derivative with respect to fluid density, and ρb is the bulk
density, corresponding to the configurational chemical potential µ (f ex = f exrep + f exas ); the
external field is taken according to (5), (4) or (6), for the cylindrical pore case, for a single
plane substrate and for a slit-like pore, respectively.

3. Results and discussion

The solutions for the density profile equation, (15), were obtained by using a Picard type
iterative method. We have performed very demanding calculations along either the increasing
or decreasing bulk density branches, taking the final profile obtained at the preceding bulk
density as the starting profile to obtain a solution at a new bulk density. The integrals in (15)
were evaluated by a trapezoidal rule; a mesh width of 0.025 was found to provide sufficient
numerical accuracy. The iterations were continued until the maximum difference between two
subsequent profiles was smaller than 10−4. The bulk density, ρb and the density profiles, ρ(R)
are dimensionless. The definition of the reduced temperature is as usual, T ∗ = kT /ε.

Once the profile is known, we calculate the excess adsorption isotherm

4 =
∫

dR [ρ(R)− ρb] (16)

and the excess grand potential per unit area,  s = ( −  b)/A, where  b is given by (7)
with the density equal to the bulk density, ρb, with the external field switched off. The locus
of a given phase transition has been found by analysing the dependence of the excess grand
thermodynamic potential on the configurational chemical potential as explained in [27, 28].

However, before proceeding to the results obtained for adsorption in pores, we would like
to characterize the wetting properties of the solid constituting the pore walls. To do that we
consider the two-site associating LJ model fluid in question in contact with single planar solid
surface. The interaction potential between fluid particles and the confining surface is given
by (5). The model fluid is studied at two values of the association energy, namely εas = 8 (a
weakly associating fluid) and εas = 20 (a strongly associating fluid). This first case is referred
to as a weakly associating fluid because the critical temperature of the bulk associating model,
T ∗
c , in this case is ≈1.41, such that the difference between the critical temperature of the LJ

model with truncated potential (T ∗
c ≈ 1.32) is quite small. The critical temperatures of the

two aforementioned models have been evaluated within the bulk counterpart of the theory of
this study employing the same numerical algorithm and accuracy. On the other hand, the
critical temperature of the model with εas = 20 is T ∗

c ≈ 2.41—which differs very much from
the non-associative LJ model. Therefore, according to physical intuition: higher association
energy—higher critical temperature of the model, we refer to the model with εas = 20 as
a strongly associating model. However, this qualitative definition does not clarify any issue
concerning interfacial criticality, before performing a detailed investigation.

3.1. Two-site associating LJ model fluid in contact with a solid surface

For illustrative purposes we present fragments of adsorption isotherms for a weakly associating
model in figures 1(a) and 1(b). The curves given in figure 1(a) concern a low density part of the
isotherms in terms of 4 dependent on the density normalized by the density for vapour–liquid
transition for the bulk fluid (ρs) at the temperature in question. The second fragment of the
first figure (figure 1(b)) concerns a high-density part of the same adsorption isotherms. We
observe that at a high temperature the adsorption is continuous, whereas a set of transitions can
be observed at lower temperatures. Figure 1(a) describes the appearance and evolution of the
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Figure 1. The adsorption isotherm for the two-site, associating model fluid with εas = 8, adsorbed
on the single, solid plane surface (the fluid–wall potential is given by (5) with the following
parameters: λ = 5 and εgs = 10). In (a) at T ∗ = 0.975, (full curve), T ∗ = 0.95, (triangles), at
T ∗ = 0.90, (circles) and T ∗ = 0.80, (diamonds). In (b) at T ∗ = 1.1, (full curve), T ∗ = 1.06, (up
triangles), T ∗ = 0.975, (squares) andT ∗ = 0.90 (circles). The low-density part of the isotherms (a)
and their high-density (b) describe the first layering transition and subsequent layering transitions,
respectively. In both panels the phase transitions are shown by vertical lines.
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Figure 2. The phase diagrams for a weakly associating (a) and strongly associating (b) fluid in
contact with single, plane solid surface, εgs = 10, λ = 5, in the form of dependencies of the
temperature of a transition on the degree of undersaturation.

first layering transition, whereas figure 1(b) gives an insight into the evolution of the second,
third and fourth layering transitions with temperature.

However, a compressed view of the phase behaviour of a weakly associating fluid in
contact with solid surface in question is given in figure 2(a) (the chemical potential scale
here and in the following is with respect to the chemical potential at saturation, µs : the
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temperature scale is normalized by the critical temperature of the relevant bulk fluid). On the
other hand, a similar phase diagram for a strongly associating fluid is shown in figure 2(b).
In discussing the results in figure 2(a) it is important to mention the following features. The
surface remains wet even at quite low temperatures. The locus of four layering transitions
has been well established in the range of temperatures of interest, it becomes more difficult to
perform calculations very close to the coexistence and localize precisely higher-order layering
transitions which are present according to our calculations. The critical temperature of the first
layering transition is substantially depressed with respect to the critical temperature of the bulk
model (see the left panel of figure 2(a)). On the other hand, the critical temperatures of the
second and following layering transitions are depressed less (see the right panel of figure 2(a)).
The branch corresponding to the second layering transition merges with the branch of the third
transition such that the number of layering transitions decreases with decreasing temperature.
Nevertheless, we can conclude that the solid surface in question belongs either to the class
of strong substrates or intermediate substrates in the classification of Pandit et al [39]. We
were not able to establish the value for the roughening temperature but seemingly trends of
behaviour of the critical temperatures for layering transition coincide with those predicted by
Pandit et al [39] for simple fluids in contact with intermediate-substrate systems.

Similar calculations and analysis have been performed for a strongly associating fluid
(figure 2(b)). Again we observed layering transitions, just the first three of them have been
localized precisely. It is important to mention that the critical temperatures for layering
transitions in this case are higher in reduced units, in comparison with a weakly associating
case (cf figure 2(a)). The differences between the critical temperature of the first layering
and subsequent transitions is much smaller for a strongly associating case than for a weakly
associating fluid. Moreover, the layering transitions are located much closer to the coexistence
curve, in comparison with a weakly associating case. All these trends in common serve as a
manifestation of the importance of the effects of bonding on the phase behaviour. The trends
observed are physically well understood (some of these trends, however for LJ type attractive
surfaces, have been discussed in great detail in our previous work [30]). To summarize, the
strongly associating fluid feels the confining surface in question again as an intermediate-
substrate system. After establishing with what solid surface we are dealing with, we proceed
with the results obtained for the fluid model in cylindrical pores.

3.2. Adsorption and phase transitions in cylindrical pores

The essence of the results of our study is given in terms of the phase diagrams. The fluid model
is studied at εas = 8 and εas = 20 (as in the above). The fluid–pore walls potential is given
by (4). We consider two cylindrical pores, namely with Rc = 2.5 and Rc = 4.5, referred to
in the following as a narrow and wide pore, respectively. The phase diagrams for a weakly
associating and strongly associating model are given in figures 3(a) and 3(b), respectively.
Here, 〈ρ〉 = ∫

dR ρ(R)/R2
c , is the average fluid density inside the pore.

Several observations are of interest. First, let us focus on the weakly associating model
case. In the narrow pore the phase diagram consists of two branches, one branch describing
the first-order layering transition and the second branch describing capillary condensation. In
a wide pore, the capillary condensation branch decouples such that the left-hand side of it
exists as a branch describing the second layering transition. There is a ‘triple’ point between
the second layering transition and capillary condensation over the entire pore. We observe
that the critical temperature of the first layering remains almost unchanged while the pore
radius changes. Moreover, the critical temperature of the first layering is almost equal to
that evaluated for a single plane solid surface (cf figure 1(a)). The critical temperature of the
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Figure 3. The phase diagrams for a weakly associating (a) and strongly associating (b) fluid
adsorbed in a narrow (Dc = 5) and wide (Dc = 9) cylindrical pore. The phase diagrams are given
by the solid and empty symbols for a narrow and wide pore, respectively. (c) is a comparison of
the phase diagrams for a weakly and strongly associating fluids in a narrow and wide cylindrical
pore (empty symbols, wide pore; solid symbols, narrow pore; squares, weakly associating fluid;
circles, strongly associating fluid). For each type of symbol, the branch at higher undersaturation,
i.e. at lower values of the chemical potential, corresponds to the layering transition whereas the
branch at lower undersaturation is for the capillary condensation.

second layering also remains almost equal to that observed for a single solid surface. The
critical temperature for capillary condensation is strongly depressed with respect to the critical
temperature of the bulk model. The depression is much stronger in a narrow pore than in a
wide pore, as expected. The critical density of the first layering seems to be more influenced
by changes of confinement rather than the critical density for capillary condensation for the
pores in question.

Now, let us proceed to the case of a strongly associating fluid adsorbed in cylindrical
pores. Both phase diagrams shown in figure 3(b) consist of two branches, corresponding to
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Figure 4. A comparison of the phase diagrams for a weakly associating (a) and strongly
associating (b) fluid adsorbed in a narrow slit and cylinder (Dc = H = 5) and wide slit and
cylinder (Dc = H = 9). The phase diagrams are given by solid triangles (slit) and solid squares
or circles (cylinder). For each type of symbol, the branch at higher undersaturation, i.e. at lower
values of the chemical potential, corresponds to the layering transition whereas the branch at lower
undersaturation is for the capillary condensation.

the first layering transition and to capillary condensation, respectively. In a wider pore the
left-hand side of the capillary condensation branch is non-monotonous—one would expect the
appearance of the second layering transition in a still wider pore. The width of each of the
branches is sensitive to confinement: narrower layering branch—wider capillary condensation
branch and vice versa. Again, the critical density of the first layering seems to be slightly more
influenced by confinement rather than the critical density of the condensation branch. However,
the critical temperature for the first layering in both pores is higher in comparison to the relevant
critical temperature in adsorption on a plane wall. The critical temperatures (in reduced units)
for capillary condensation are systematically higher for the strongly associating case than for
a weakly associating one. The lower depression of the critical temperature for condensation is
due to stronger trends for bonding between fluid species. The stronger the bonding between
them the more competitive becomes their interaction with respect to the attraction between
the fluid–pore walls. A compressed insight into the phase diagrams trends, supporting our
discussion, is given in figure 3(c).

We have performed similar calculations and analysis for the fluid models in question for
slit-like pores with a nominal width equal to the diameter of a cylindrical pore. A comparison
of the corresponding phase diagrams for a weakly associating and strongly associating fluid
is given in figures 4(a) and 4(b), respectively. To summarize this group of results, we would
like to mention that the branches which correspond to the layering transition are characterized
by very similar critical temperatures. The critical density is more influenced by the shape of
confinement. Stronger confinement in the cylinder, in comparison with a slit, yields a lower
critical density of transition (i.e. the transition occurs at a lower value of the chemical potential).
However, the critical properties of the first layer are mostly determined by the fluid–wall
interaction and intrinsic characteristics of the fluid model rather than by confinement. On the
other hand, while the trends of the behaviour of the critical density for condensation which are
dependent on the geometry of the pore are similar to those observed for the layering transition,
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Figure 5. The density profiles (a), the density profiles of unbonded particles, i.e. of monomers (b),
and the density profiles for the average chain length (c), before and after capillary condensation.
This case is for T ∗/T ∗

c = 0.733 and εas = 8 for narrow pore (Dc = H = 5). The broken
curve corresponds to ρb = 0.0965, the dash–dotted curve to ρb = 0.1880 and the full curve to
ρb = 0.7371.

the depression of the critical temperature is sensitive to different confinement. Stronger
confinement in the cylindrical pore yields a much stronger depleted critical temperature in
comparison with the slit-like pore. Higher critical temperatures are observed for a strongly
associating fluid in comparison with a weakly associating fluid, as already mentioned.

3.3. Structural properties of the model adsorbed in cylindrical pores

Next, we would like to comment quite briefly about structural changes in the adsorbed
chain-forming fluid model occurring when the fluid undergoes a layering transition and
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Figure 6. (a) the average density for a strongly associating fluid, at T ∗/T ∗
c = 0.84, in narrow

cylindrical (circles) and in slit-like (triangles) pores (Dc = H = 5) versus the chemical potential.
(b) the average chain length along the isotherms given in (a).

capillary condensation. The density profiles shown in figure 5 are for the strongly associating
model, εas = 20, at T ∗/T ∗

c = 0.733 in a wide cylindrical pore, Dc = 2Rc = 9. The figure
consists of three panels, in the first one we present the density profile of the fluid species before
the layering transition, after the layering transition and after capillary condensation occurred
in the entire pore. Due to strong bonding effects the profiles do not exhibit much structure.
Filling of the first layer adjacent to the pore wall results in a drastic change of the contact value
of the profile, farther from the pore wall, the pore remains almost empty (figure 5(a)). On
the other hand, during capillary condensation, the contact value is not changed so drastically,
rather the second maximum of the profile develops and simultaneously the density in the
entire pore becomes high. The value of the density in the central part of the pore is almost
constant, however. One can observe that bonding effects have an essential influence on the
fluid structure in the pore. The density profile of the unbonded species, χ0(R) = 1/χ2

A(R),
shown in figure 5(b), is given by using the same nomenclature of lines as in figure 5(a). Before
the first layering transition the fraction of the unbonded species is low in the close vicinity of
the pore wall but rapidly saturates, to the value of ≈0.95. Thus a small fraction of bonded
particles is present over the entire pore. After the layering transition these trends of behaviour
preserve, with the exception that the region where the fraction of the unbonded species is low
extends farther from the pore wall. Finally, after the capillary condensation, the profile of the
unbonded species is negligibly small over the entire pore.

The density profile for the average chain length,m(R) = 1/χA(R), is given in figure 5(c).
Before and after the layering transition the profile differs from the value attained in the central
part of the pore only in the close vicinity of the pore wall. In the central part of the pore in
these two cases the average chain length is very slightly larger than unity. After the layering
transition chains consisting of approximately six monomers are formed in the layer adjacent to
the pore wall. After the capillary condensation, the average chain length in the central part of
the pore is high—chains involve more than nine monomers on average. The profile oscillates
in the vicinity of the pore wall, close to the wall chains consisting of approximately twelve
monomers are formed. However, the small depletion of the profile at contact manifests steric
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Figure 7. The phase diagram for capillary evaporation (empty symbols) and for capillary
condensation (solid symbols) for a narrow pore (Dc = H = 5) for a strongly associating fluid,
εas = 20, (cylindrical pore, circles and slit-like pore, triangles). The full curve corresponds to the
bulk liquid–vapour transition.

restriction due to the pore wall curvature. Presumably, chains prefer parallel orientation with
respect to the pore wall as follows from the period of oscillations.

In general, the formation of chains via the association of monomers is quite sensitive to
the shape of confinement. To prove this, we present in figure 6(a) the isotherms of the average
densities for the narrow cylindrical pore, Dc = 5, and for a slit-like pore with H = 5. Both
isotherms were calculated at a temperature equally distanced from the critical temperature of
the bulk strongly associating fluid, T ∗/T ∗

c = 0.84. The value for the average chain length on
the chemical potential in both cases is shown in figure 6(b). We observe that after capillary
condensation the average density in both pores is almost equal. However, the composition, as
reflected in the values of 〈m〉, is quite different. The average chain length in the fluid confined
to the cylindrical pore, in equilibrium with the fluid confined to the slit-like pore of comparable
width, is essentially higher than in the slit-like pore.

3.4. Capillary evaporation in the cylindrical and slit-like pores

Our final remarks concern the phenomenon of capillary evaporation in the cylindrical and
slit-like pores. The phase diagram for capillary evaporation for associating fluids has not been
studied so far. In order to investigate trends of capillary evaporation in both cylindrical and
slit-like pores, we have switched off the attractive fluid–wall interaction in both cases, only
the impermeability of the pore walls have remained. One example of the phase diagram for
evaporation together with capillary condensation in a narrow pore (Dc = 5 and H = 5) for
a strongly associating fluid, εas = 20, is shown in figure 7. The branches corresponding to
condensation and evaporation are almost equidistant from the bulk liquid–vapour transition
line both for the cylindrical and for the slit-like pore. The critical temperature for evaporation
is depressed to the same extent, as that for condensation in the case of the slit-like pore. In
the case of a cylindrical pore, the critical temperature for evaporation is depressed slightly
less than for condensation. Nevertheless, branches corresponding to condensation and to
evaporation in the cylindrical pore are more separated, with respect to the transition in the bulk
system, than the branches corresponding to the transitions in the slit-like pore. This behaviour
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reflects the stronger confinement effects in the cylindrical pore on the critical phenomena in
question.

4. Conclusions

We have investigated the adsorption and phase transitions of the two-site associating fluid
model in cylindrical pores. The wetting properties of the solid surface forming the pore walls
have been characterized. In addition, we have performed several calculations for slit-like
pores, for a comparison with the results for cylindrical pores, and elucidate the effects of
the pore geometry on the adsorption and critical phenomena. In all the cases, the fluid wets
the surface up to low temperatures, such that the pore walls can be classified as strongly
or intermediate substrates. We have established that capillary condensation of the model
associating fluid in question is preceded by one or two layering transitions dependent on the
pore width, and on the association energy between monomers. The dense layer adjacent to
the pore wall consists of highly bonded species, whereas in the dilute phases free monomers
prevail. We have observed that the critical temperature of the first layering transition, both in
the cylindrical and in slit-like pores, almost coincides with that for the same fluid adsorbed
on the plane substrate. In contrast, the critical temperature for capillary condensation is very
dependent on the geometry and volume of the pores. This is understandable, because with the
decreasing radius of a cylindrical pore, the confined fluid reduces to a one-dimensional system,
and all the phase transitions become suppressed, see e.g. [40]. Moreover, the adsorbed strongly
associating fluid exhibits weaker trends for the depression of the critical temperature than a
weakly associating fluid. The stronger association between monomers in the adsorbed fluid
also results in a smaller difference between the critical temperatures for layering and capillary
condensation transitions. The critical temperature for capillary evaporation in cylindrical and
slit-like pores exhibits depression of the same order of magnitude as the capillary condensation
with respect to the critical temperature of the bulk fluid. Our results for the adsorption of a
weakly associating model are in qualitative agreement with those obtained in previous works
for non-associating fluids in cylindrical pores [31, 32]. Some differences and some new features
can be attributed to the different modelling of the non-associative interactions between fluid
species, to different energetic parameters of attraction and different decay of the fluid–wall
attraction. However, the effects of association between fluid species clearly follow from the
results presented in our study. Moreover, similar investigations performed for one-site and
four-site LJ associating model fluids have convinced us that the trends discussed in this work
are of more general validity.

Our expectation is that the results of this study would be helpful for further theoretical
developments in the spirit of combining the SAFT and density functional approaches. An
adjustment of the parameters of the model and pore walls surfaces would also be necessary
in a future study. However, it is most important for future developments to consider a density
functional approach in order to allow mixtures of fluid species to be dealt with adequately.
Hopefully, the density functional approach of Rosenfeld, Kierlik and Rosinberg would be of
much interest. Our principal intention in this work was, however, to elucidate the effects of
the pore geometry on adsorption and phase transitions in associating fluids at a basic level.
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